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Abstract
We construct representations of the Lie algebra su(1, 1) using representations
of the momentum and position operators satisfying the R-deformed Heisenberg
relations, in which the fractional dimension d and angular momentum � appear
as parameters. The Bargmann index κ , which characterizes representations of
the positive discrete series of su(1, 1), can take any positive value. We construct
coherent states in fractional dimensions, in particular we extend the two well-
known analytic representations of coherent states for su(1, 1), Perelomov and
Barut–Girardello states, from dimension one to any dimension d. We generalize
this construction to time-dependent coherent states by means of the su(1, 1)

symmetries of the quantum time-dependent harmonic oscillator in fractional
dimensions. We investigate the uncertainty relations of the momentum and
position operators with respect to these coherent states, and their dependence
on the dimension.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Fd, 03.65.Ge

1. Introduction

Fractional dimensions have been used in a variety of studies, ranging from calculations of
critical exponents of Ising models in arbitrary dimensions [1] to the modelling of refractive
index [2], donor states [3] and superconductivity [4] in solid state systems. Fractional
dimensional models are efficient in dealing with complicated problems that are otherwise
analytically intractable, requiring extensive computational efforts [5–7].

Recently, following work of Stillinger [8], we formulated [9] an algebraic approach to
the quantum description of physical models in fractional dimensions in which the dimension
d and angular momentum � appear as parameters within representations of the position and
momentum operators. Quadratic combinations of these operators satisfy an su(1, 1) algebra
which can be used to solve the harmonic oscillator for any d. Here we extend this algebraic
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approach to the construction of coherent states. Such states define the limit between classical
and nonclassical behaviour of quantum states and possess probability distributions which
follow classical trajectories. Coherent states are therefore suitable for the investigation of
quasiclassical features of a quantum mechanical process. Numerous studies related to coherent
states of one-dimensional oscillator systems have appeared in the literature [10, 11] including
several reviews [12–14].

A general method of constructing standard coherent states is by means of a unitary
displacement operator that acts on a reference state which may be chosen to be the vacuum
[15, 16]. Another involves the construction of an eigenstate of the annihilation operator
[10, 16] while a third identifies states which yield the minimum uncertainty [17]. Coherent
states of parabosons, which are relevant to our approach, can be constructed using the direct
method of Sharma et al [18], which defines coherent states as eigenstates of the annihilation
operator. We discuss this method within the context of fractional dimensions. The second
method, which has been well investigated for the one-dimensional harmonic oscillator [19],
exploits properties of the su(1, 1) algebra, and we also extend this to fractional dimensions.

The method of dynamical invariants introduced by Lewis and Riesenfeld [20] provides
a means of finding exact solutions to the time-dependent Schrödinger equation, which in [9]
we used to solve the time-dependent harmonic oscillator for any d and any (integer) �. We
use these wavefunctions and properties of the su(1, 1) algebra to construct corresponding
time-dependent coherent states which, to our knowledge, have not been previously derived.
These states display a nontrivial time dependence and provide an example of ‘temporal
stability’ discussed by Gazeau and Klauder [21], in which a system initially in a coherent
state evolves as a coherent state at all later times. The Lie algebra su(1, 1) is of interest in
quantum optics as it characterizes various quantum optical systems. It is well known [19, 22]
that the bosonic realization of su(1, 1) gives an accurate description of degenerate and non-
degenerate parametric amplifiers. Here, we investigate squeezing properties of coherent states
of the harmonic oscillator in fractional dimensions. The study of squeezed states (i.e. reduced
fluctuations for one observable to a value less than its ground state value) is interesting because,
other than giving us new understanding of quantum phenomena, there is potential application
for reducing noise in optical and communication systems [23].

In section 2 we review properties of the harmonic oscillator in fractional dimensions
and in section 3 we summarize properties of the relevant su(1, 1) algebra. In section 4, we
generalize analytic representations of coherent states for su(1, 1) in one dimension, namely
Perelomov and Barut–Girardello states, to fractional dimensions, and we also reformulate the
direct method [18] of constructing coherent states for parabosons. In section 5, we investigate
uncertainty relations and squeezing properties of coherent states in fractional dimensions,
particularly with respect to the dimensional dependence. In section 6, we discuss solutions to
the time-dependent harmonic oscillator in dimension d and construct corresponding coherent
states. We also construct coherent states associated with the analytic representations of the
associated su(1, 1) algebra and discuss their properties.

2. The harmonic oscillator in fractional dimensions

The algebraic formulation of quantum mechanics for one degree of freedom, in any dimension
d > 0, begins with the following relations proposed by Wigner [24] in connection with
quantization of the harmonic oscillator:

[Q2, P ] = 2iQ, [P 2,Q] = −2iP, (1)
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where P,Q are the momentum and position operators. As discussed in [9], these relations
may be written more conveniently by introducing the reflection operator R to read

[Q,P ] = i(1 + νR), {Q,R} = 0 = {P,R}, R2 = 1 (2)

where ν is a real parameter. We also have the Hermiticity properties

Q∗ = Q, P ∗ = P, R∗ = R.

If we define annihilation and creation operators a, a† in the usual way according to

a = 1√
2
(Q + iP), a† = 1√

2
(Q − iP),

then a, a† satisfy the trilinear relations of a paraboson algebra with one degree of freedom:

[{a, a†}, a] = −2a, [{a, a†}, a†] = 2a†,

or, in more convenient form,

[a, a†] = 1 + νR, {a,R} = 0 = {a†, R}, R2 = 1. (3)

The paraboson order is 1 ± ν (depending on the parity of the vacuum on which the states
are built) but, in contradistinction to the case of general paraboson algebras (as discussed
by Greenberg and Messiah [25]), is not restricted to integer values only. The commutation
relations (2) and (3) appeared in [26] (equations (2.24) and (2.25)) but without the dimensional
interpretation we develop here.

The connection with quantum mechanics in fractional dimensions arises from the
following coordinate representation of P,Q,R, as described in [9]. Let P,Q,R act in a
Hilbert space H of complex functions ψ(x) defined on R with an inner product defined by

(ψ, φ) =
∫ ∞

−∞
|x|d−1ψ(x)φ(x) dx, (4)

with

Rψ(x) = ψ(−x)

Qψ(x) = xψ(x)

Pψ(x) =
[
−i

d

dx
+

iν

2
x−1R − i(d − 1)

2
x−1

]
ψ(x),

(5)

then the relations (2) are satisfied. The operators P,Q,R are each Hermitian, provided that
ψ(x) has suitable behaviour at infinity and at the origin, and so may be extended to self-adjoint
operators on H. The parameter ν is chosen such that P 2 = −�radial within H, where the radial
Laplacian is defined by

�radial = d2

dx2
+

(d − 1)

x

d

dx
− �(� + d − 2)

x2
, (6)

where the parameter � may be identified with angular momentum and takes the values
� = 0, 1, 2 . . . . The dimension d can take any positive value. We assume that the Hamiltonian
under consideration has the form H = 1

2 [P 2 +V (Q)] where the potential V is an even function
of Q and hence commutes with R, and in this case the eigenfunctions of H are either even or
odd. Since the parity of the eigenfunction depends on whether � is even or odd, R has the
eigenvalue (−1)�. We also identify

ν = (−1)�(d − 1 + 2�) (7)

but due to the invariance of �radial under � −→ −� − d + 2 another choice is

ν = (−1)�−1(d − 3 + 2�), (8)
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which corresponds to the previous case with � → �−1. In each case we have P 2ψ = −�radialψ

as required, for all eigenfunctions ψ of H. The Hilbert space H under consideration decomposes
into the direct sum of subspaces H�, each carrying the label �, i.e. H = �� ⊕ H�.

Let us consider now specifically the harmonic oscillator, for which the Hamiltonian is

H = 1
2 (P 2 + Q2) = 1

2 (a†a + aa†) (9)

and for which, as is well known (see for example [9, 26, 27]), the eigenfunctions are

|n〉e = N
− 1

2
n (a†)n|0〉e, (10)

where |0〉e is the even vacuum state with the properties a|0〉e = 0 and R|0〉e = |0〉e, and where
the normalization is given by

Nn =
n∏

k=1

[
k +

ν

2
(1 − (−1)k

]
.

Specifically we have, for even and odd subscripts,

N2m = 22mm!

(
1 + ν

2

)
m

N2m+1 = 22m+1m!

(
1 + ν

2

)
m+1

,

where m is an integer, and where we have used the Pochhammer product notation

(a)n = a(a + 1) · · · (a + n − 1) = �(a + n)

�(n)
, (11)

where n can be a positive or negative integer. The eigenfunctions (10) are even or odd,
according to whether the paraboson number n is even or odd. It follows that

a†|2m〉e =
√

2m + 1 + ν|2m + 1〉e, a†|2m + 1〉e =
√

2m + 2|2m + 2〉e, (12)

with similar matrix elements between states built on the odd vacuum |0〉o. The eigenvalues of
H corresponding to the states built on the even vacuum are

En = n + 1
2 (ν + 1), n = 0, 1, 2 . . . (13)

while for those built on the odd vacuum ν is replaced by −ν as follows from the symmetry
R → −R.

The specific application to quantum mechanics in fractional dimensions is obtained by
substituting the explicit representation (5) for P,Q,R, and hence also for the paraboson
operators a, a†. In the coordinate representation the eigenfunctions ψm,�(x) of the Hamiltonian
are solutions of the equation

1
2 (−�radial + x2)ψ = Eψ

and take the form derived by Stillinger [8] (normalized with respect to the inner product (4)):

ψm,�(x) = 〈x|m〉� =
√

m!

�
(
m + � + d

2

) (−1)mx� e− 1
2 x2

L
(�−1+ d

2 )
m (x2), (14)

where L denotes generalized Laguerre polynomials, and where m is a nonnegative integer.
Properties of Laguerre polynomials and their connection with su(1, 1) have been discussed
and summarized by Biedenharn and Louck [30] (see Topic 6 in [30], pp 284, 304).
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The functions ψm,� are even or odd according to whether � is even or odd, and d can take
any positive value. The energy levels are given by

Em,� = 2m + � +
d

2
, m = 0, 1, 2 . . . . (15)

The simple harmonic oscillator is regained for d = 1 by choosing either � = 0 (even states)
or � = 1 (odd states). In this case the generalized Laguerre polynomials reduce to the usual
Hermite polynomials, see [28] (p 779).

By solving the equation a|0〉 = 0 we find that the vacuum state for each fixed � is
〈x|0〉� = ψ0,�(x) which is therefore the unique (up to normalization) vacuum state within each
subspace H� of H. The paraboson order for states built on the vacuum in H� is d + 2�.

Neither a nor a† act within H� for fixed � since these operators do not preserve parity. We
find, choosing ν = (−1)�(d − 1 + 2�), that

a†ψm,� =
√

2m + 2� + dψm,�+1 a†ψm,�+1 =
√

2m + 2ψm+1,� (16)

in accordance with (12). In each case the energy level (15) is raised by one unit, as indicated
also by the energy levels (13). Evidently, in the first case the creation operator increments the
angular momentum � by addition of paraboson quanta.

The operators (a†)2 and a2 act within each subspace H� and behave as a raising (lowering)
operator for the energy levels given in (15). The properties of these operators, which generate
su(1, 1), are considered in the next section. Hence, even powers of a† or a act within H�, and
odd powers act as mappings H� −→ H�±1.

3. su(1, 1) symmetry

Fundamental to our formulation is the existence of symmetries, in particular the invariance
of the relations (2) under SL2(R) transformations of P,Q. The corresponding Lie algebra
sl2(R) ∼ su(1, 1) is generated by quadratic combinations of P,Q, specifically

K0 = 1
4 (Q2 + P 2), K1 = 1

4 (Q2 − P 2), K2 = − 1
4 (QP + PQ), (17)

for which

[K1,K2] = −iK0, [K0,K1] = iK2, [K0,K2] = −iK1.

The relations (1) state that the pair (P,Q) forms a spinor operator with respect to this algebra,
as discussed in [29].

In terms of the paraboson operators the algebra su(1, 1) is generated by {K0,K± =
K1 ± iK2} defined by

K0 = 1
4 (a†a + aa†), K+ = 1

2a†2
K− = 1

2a2, (18)

which satisfy

[K0,K±] = ±K± [K+,K−] = −2K0. (19)

Irreducible unitary representations of this algebra are infinite dimensional and for the case at
hand belong to the positive discrete series, as discussed for example by Biedenharn and Louck
[30] (p 276), also Perelomov [15] (p 70), and Kastrup [31]. States in the representation space
are either even or odd and are labelled by eigenvalues of the mutually commuting generators
R,K0, C where C is the Casimir invariant:

C = K2
0 − 1

2 (K−K+ + K+K−) = K0(K0 − 1) − K+K−.
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This operator C does not commute with either a or a† however, following [32], we may
define C̃ = C + 1

8 [a, a†] which is independent of R and commutes with these paraboson
operators. The operator C̃ can be realized in the Lie superalgebra osp(1|2) generated by

K±,K0, V+ =
√

1
8a† and V− = −

√
1
8a†, see [32].

As is well known [33] the orthonormal basis {|κ,m〉±}, where m = 0, 1, 2, . . . , satisfies

R|κ,m〉± = ±|κ,m〉±

C|κ,m〉± = κ(κ − 1)|κ,m〉±

K0|κ,m〉± = (κ + m)|κ,m〉±

K+|κ,m〉± =
√

(m + 1)(m + 2κ)|κ,m + 1〉±

K−|κ,m〉± =
√

m(m + 2κ − 1)|κ,m − 1〉±

(20)

where the Bargmann index κ is any positive number (for unitary representations of the
covering group of SU(1, 1)). The relation of κ to ν is determined by evaluating C using the
realization (18):

C = 1
16 (νR − 3)(νR + 1),

leading to

C|κ,m〉− = 1
16 (ν + 3)(ν − 1)|κ,m〉− C|κ,m〉+ = 1

16 (ν − 3)(ν + 1)|κ,m〉+ .

We may identify the Bargmann indices κe and κo for the even and odd subspaces respectively
as

κe = 1
4 (1 + ν), κo = 1

4 (3 + ν), (21)

and using (20) and (21) we can demonstrate the equivalence

|κe,m〉+ ≡ |2m〉e, |κo,m〉− ≡ |2m + 1〉e, (22)

where the Fock states on the right, defined by (10), implicitly carry the label ν. There is a
similar equivalence for Fock states built on the odd vacuum |0〉o, with ν → −ν.

At ν = 0 we regain the well-known values κe = 1
4 and κo = 3

4 for the usual harmonic
oscillator (see [15] and also [19]). For general ν, however, there are no restrictions on the
possible values of κ , and we obtain all representations of the positive discrete series of su(1, 1).

In order to establish properties of coherent states in fractional dimensions it is convenient
to express the su(1, 1) generators directly in terms of the realization given by (5). We have
then

K0 = 1

4
(−�radial + x2) K1 = 1

4
(�radial + x2) K2 = i

2

(
x

d

dx
+

d

2

)
, (23)

where �radial is defined in (6). The Casimir invariant simplifies to

C = 1
16 (d + 2�)(d + 2� − 4)I

and hence the Bargmann index is given by

κ = 1
4 (d + 2�), (24)

and so takes any positive value as d, � are varied. Since we require κ > 0 we discard in
general the other possible value κ = 1

4 (−d − 2l + 4) which results from the invariance under
� −→ −� − d + 2. This corresponds to the fact that under this symmetry the eigenfunctions
(14) are transformed into functions that in general do not belong to the required Hilbert space
H. The special cases κ = 1

4 , 3
4 are regained with d = 1, � = 0, 1, and similarly for the second

choice for κ .
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The matrix elements of {K0,K±} are given by (20) in which the states |κ,m〉± are
associated with the eigenfunctions ψm,�(x) defined in (14), which are even or odd according
to the value of �. The generators {K0,K±} act within the subspace H� of H, preserving both
parity and angular momentum, and therefore provide a convenient means for constructing
coherent states.

4. Coherent states in fractional dimensions

Coherent states and their properties have been widely studied, see for example the volume
of collected papers [11] (edited by Klauder and Skagerstam) also [10], and the recent review
article by Vourdas [14], which contains many further references. Coherent states for paraboson
operators have also been extensively investigated, see for example the papers by Sudarshan
and collaborators [18, 26, 34]. A brief study of coherent states in fractional dimensions was
undertaken in [35] for ν = d − 1 with the angular momentum values restricted to � = 0 and
� = 1.

For the simple harmonic oscillator in one dimension, coherent states may be defined
using properties of the displacement operator, see for example the discussion in Klauder and
Sudarshan [26], chapter 7, and although displacement transformations can also be implemented
for the R-deformed relations (2), they do not have the simple properties which follow from the
canonical commutation relations, essentially because the relations (1) are not invariant under
simple translations of Q or P. We describe in turn three other methods by which coherent states
may be defined in fractional dimensions, firstly as eigenstates of the annihilation operator, and
then also using analytic representations of su(1, 1).

4.1. Coherent states as eigenstates of the annihilation operator

Coherent states may be defined as eigenstates of the annihilation operator:

a|α〉� = α|α〉� (25)

where α ∈ C, and where we have indicated the dependence on �. The states |α〉� may be
expanded as a linear superposition of the paraboson states |n〉 shown in (10), as has been done
for paraboson states in [18].

In the application to quantum mechanics in fractional dimensions we replace the paraboson
states by the explicit wavefunctions ψm,�(x) defined in (14) and hence expand the states 〈x|α〉�
(in the coordinate representation) as follows:

〈x|α〉� =
∞∑

m=0

(bmψm,� + cmψm,�+1) (26)

for some coefficients {bm, cm}, where we have allowed for an expansion over both even and
odd states. The action of the annihilation operator on these states, with ν = (−1)�(d −1+2�),
is given by

aψm,� =
√

2mψm−1,�+1, aψm,�+1 =
√

2m + 2� + dψm,�

as follows from (16). Hence, we obtain

bm = C�α
2m√

m!22m+2κ−1�(2κ + m)
, cm = C�α

2m+1√
m!22m+2κ�(2κ + m + 1)

, (27)
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where C� is a normalization constant, and 2κ = � + d
2 . The normalization �〈α|α〉� = 1 leads

to
∞∑

m=0

(|bm|2 + |cm|2) = 1,

as follows from orthonormality of the eigenfunctions ψm,� with respect to m and also with
respect to eigenfunctions of opposite parity. Define the function

Fµ(z) = Iµ−1(z) + Iµ(z), (28)

where Iµ denotes a modified Bessel function of order µ, of the first kind, then we obtain C�

in the form

C� = |α|2κ−1√
F2κ(|α|2)

. (29)

We may now sum the series (26) by using one of the generating functions for generalized
Laguerre polynomials (see [28] p 784) to obtain

〈x|α〉� =
(

α

|α|
)1−2κ

e− 1
2 (x2+α2)x1− d

2
F2κ(

√
2xα)√

F2κ(|α|2)
. (30)

As an example, for the special case of the simple harmonic oscillator (d = 1, � = 0) we obtain
the well-known expression

〈x|α〉�=0 = π− 1
4 e− 1

2 |α|2 e− 1
2 (x2+α2)+

√
2xα.

A more direct method of finding the eigenfunctions 〈x|α〉� is to solve (25) as a differential
equation by means of the representation (5) for P,Q. If we denote u(x) = 〈x|α〉� then

u′ +

(
x − ν

2x
R +

d − 1

2x

)
u =

√
2αu

and since u = ue + uo (writing u as a sum of even and odd parts) we obtain

u′
e +

(
x − �

x

)
ue =

√
2αuo u′

o +

(
x +

d − 1 + �

x

)
uo =

√
2αue.

This leads to second-order differential equations for ue and uo, each of which have a solution
that is regular at the origin and is expressible in terms of modified Bessel functions. The sum of
these two solutions gives u and hence the coherent state 〈x|α〉� with the precise x-dependence
as shown in (30).

4.2. Coherent states using analytic representations of su(1, 1)

There are two well-known analytic representations of coherent states for su(1, 1) which have
been studied in quantum optics for single model fields at ν = 0. The first are the Perelomov
generalized coherent states [15] which are obtained using the displacement operator formalism
and to which we refer as a Perelomov su(1, 1) coherent state. The second su(1, 1) coherent
states are based on the overcomplete basis of the Barut–Girardello coherent states [33] which
are the analogue of harmonic oscillator coherent states, namely eigenstates of the annihilation
operator.
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The standard Perelomov coherent states |ζ, κ〉P are obtained (see [15], chapter 5, also
[22]) by allowing the unitary operator eξK+−ξK− to act on the vacuum:

|ζ, κ〉P = eξK+−ξK−|κ, 0〉

= (1 − |ζ |2)κ
∞∑

m=0

√
�(m + 2κ)

m!�(2κ)
ζm|κ,m〉 (31)

where ζ = ξ

|ξ | tanh |ξ | satisfies |ζ | < 1. Equation (31) describes the well-known squeezed
states [36] which are equivalent to two-photon coherent states [37]. Properties of the squeezing
operator S(ξ) = eξK+−ξK− have been discussed by Stoler [36].

We now explicitly evaluate these coherent states |ζ, κ〉P in the coordinate representation by
substituting the value κ = 1

4 (d +2�) derived in (24), which is appropriate to our formulation in
fractional dimensions, and by replacing the eigenstates |κ,m〉 by the normalized wavefunctions
ψm,�(x) given in (14). The sum over m can be performed explicitly with the help of the
generating function for generalized Laguerre polynomials (see [28], p 784) to obtain

〈x|ζ, κ〉P = x�(1 − |ζ |2)κ√
�(2κ)(1 + ζ )2κ

exp

[
x2(ζ − 1)

2(ζ + 1)

]
, (32)

where 2κ = � + d
2 . In this form we see directly that the functions 〈x|ζ, κ〉P are defined

everywhere on the complex plane, except on the line ζ = −1, but are normalizable as
functions of x only in the unit disc |ζ | < 1. These states are known [14, 22] to resolve the
identity operator for κ > 1

2 , by integration over the unit disc. The overlap of two Perelomov
coherent states takes the form

P〈ζ1, κ|ζ2, κ〉P = (1 − |ζ1|2)κ(1 − |ζ2|2)κ
(1 − ζ1ζ2)2κ

, (33)

as may be verified directly from the expression (32). In contrast to the states (30), the functional
form of the states (32) does not change as d varies.

Barut–Girardello coherent states |z, κ〉BG are defined [33] as eigenstates of the lowering
operator K−:

K−|z, κ〉BG = z|z, κ〉BG (34)

and have the expression

|z, κ〉BG = z
κ− 1

2√
I2κ−1(2|z|)

∞∑
m=0

zm

√
m!�(m + 2κ)

|κ,m〉 (35)

where z is an arbitrary complex number, and I2κ−1 denotes a modified Bessel function of the
first kind. (In the notation of Barut and Girardello [33] we have E0 = − = κ and their

√
2z

is replaced by our z.) Various properties of Barut–Girardello states including the completeness
relations and their overlap have been discussed in [22, 14] (and other references cited therein).

As in the case of Perelomov states, we can explicitly evaluate the states 〈x|z, κ〉BG

by substituting κ = 1
4 (d + 2�) and replacing the eigenstates |κ,m〉 by the normalized

wavefunctions ψm,�(x) given in (14). As before, the sum over m can be performed explicitly
with the help of the generating function for generalized Laguerre polynomials ([28], p 784) to
obtain

〈x|z, κ〉BG = x1− d
2 e−z− 1

2 x2 I�+ d
2 −1(2x

√
z)√

I�+ d
2 −1(2|z|)

, (36)
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where we have displayed explicitly the dependence on d. Alternatively, we may solve (34)
directly by using the expressions (23) for K1,K2 to obtain u(x) = 〈x|z, κ〉BG as the normalized
solution (regular at the origin) of the differential equation

�radialu + 2xu′ + (d + x2)u = 4zu.

Both the states 〈x|z, κ〉BG and the Perelomov states 〈x|ζ, κ〉P defined in (32) are eigenfunctions
of R, i.e. they have parity (−1)� and so are even or odd as functions of x according to whether
� is even or odd. The overlap between Barut–Girardello states and Perelomov states is known
to be [14, 22]

P〈ζ, κ|z, κ〉BG = zκ−1/2(1 − |ζ |2)κ exp(ζ z)√
I2κ−1(2|z|)�(2κ)

(37)

which may be verified explicitly from the expressions (32) and (36).
The relation between Barut–Girardello states and Perelomov states is further discussed

in [14, 22]. The coherent states (30) which are defined as the eigenfunctions |α〉� of the
annihilation operator, where α = √

2z, are also related to the Barut–Girardello states as a
linear combination, as follows from a2|α〉� = α2|α〉�.

5. Uncertainty relations in fractional dimensions

We now investigate the way in which the dimension affects uncertainty relations of various
quantum mechanical operators. Any pair of Hermitian operators �,� satisfies the Schwartz
inequality (see, for example, [38], chapter 9)

(��)2(��)2 � 1
4 〈{�̂, �̂}〉2 + 1

4 〈−i[�,�]〉2 � 1
4 〈−i[�,�]〉2, (38)

where �̂ = �−〈�〉, in which 〈�〉 denotes the average or expectation value of � with respect
to a given reference state, and the uncertainty �� is defined by

(��)2 = 〈(�̂)2〉 = 〈�2〉 − 〈�〉2.

If we assume that the reference state carries definite angular momentum �, then 〈νR〉 =
d − 1 + 2� as follows from (7). Hence,

�Q�P � 1
2 |〈−i[Q,P ]〉| = 1

2 〈1 + νR〉 = 1
2 (d + 2�) � 1

2d. (39)

As we show below, equality is achieved for the ground state of the harmonic oscillator. For
� = 0 we deduce that the uncertainty can be reduced to an arbitrarily small value, by choosing
sufficiently small d > 0. The expression (39) reduces to the expected form at d = 1 and � = 0
but differs from the uncertainty relations derived for the specific case of � = 0 in [35] where
separate expressions for the odd and even states were obtained.

Equation (39) can be generalized to the Robertson–Schrödinger uncertainty relation [39]
by using (38) to obtain

〈P 2〉〈Q2〉 − 1
4 〈QP + PQ〉2 � 1

4 〈−i[Q,P ]〉2 = 1
4 (d + 2�)2. (40)

The left-hand side is invariant under canonical transformations of the commutation relations
(2), that is under linear SL(2) transformations of the spinor pair (P,Q) and implies the
Heisenberg uncertainty relation (39). A similar relation follows from (38) for the uncertainties
�P,�Q involving P̂ , Q̂.
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5.1. Average taken with respect to harmonic oscillator states

By taking the average with respect to the normalized states ψm,�(x) defined in (14) we obtain

〈P 〉 = 0 = 〈Q〉, 〈P 2〉 = 〈Q2〉 = 1
2 (4m + d + 2�),

and therefore

�Q�P =
√

〈P 2〉〈Q2〉 = 1
2 (4m + d + 2�),

and so we attain the lower bound shown in (39) at m = 0.
We can extend this uncertainty relation to higher-order moments of P and Q by calculating

〈P r〉 and 〈Qr〉 for any integer r. We have, firstly,

〈P r〉 = 0 = 〈Qr〉 (odd r),

since in this case the integrand in the inner product (4) is odd.
In order to calculate 〈P 2n〉 and 〈Q2n〉 for integers n we use properties of the su(1, 1)

algebra generated by quadratic combinations of P,Q as described in section 3. We have

P 2 = 2K0 − K+ − K−, Q2 = 2K0 + K+ + K−, (41)

and so we define

� = 2K0 + η(K+ + K−),

where η2 = 1, and now determine the matrix element 〈�n〉 for any integer n.
The matrix elements of the generators of su(1, 1) are given by (20), where κ = 1

4 (d + 2�),
and hence

�|κ,m〉 = 2(κ + m)|κ,m〉 + η
√

(m + 1)(m + 2κ)|κ,m + 1〉 + η
√

m(m + 2κ − 1)|κ,m − 1〉,
which implies, by induction on n,

�n|κ,m〉 =
2n∑
i=0

An
i (m)

√
(m + 1)i−n(m + 2κ)i−n|κ,m − n + i〉

for any integer n � 0, where we have used the Pochhammer notation defined in (11). The
coefficients An

i (m), which are zero unless 0 � i � 2n, satisfy the recurrence relation

An
i (m) = η(m − n + i + 1)(2κ + m − n + i)An−1

i (m)

+ 2(κ + m − n + i)An−1
i−1 (m) + ηAn−1

i−2 (m), (42)

starting with A0
0(m) = 1. In particular, we wish to determine the coefficients An

n(m), for then
we obtain 〈�n〉 = An

n(m).
We find that An

n(m) is a polynomial of degree n in the quantum number m, with positive
coefficients, hence An

n(m) � An
n(0). For m = 0 the solution to the recurrence relations (42) is

An
i (0) =

ηi−n

(
n

i − n

)
(2κ + i − n)2n−i n � i � 2n

0 otherwise

as may be verified directly by substitution in (42).
Hence, for any positive integer n we obtain

〈P 2n〉 = 〈Q2n〉 = An
n(m) � An

n(0) = (2κ)n = (
1
2 (d + 2�)

)
n

with equality when we choose the ground state m = 0. For 2κ = 1
2 , i.e. d = 1, � = 0 this

result agrees with that found by Santhanam ([40], equation (14)). We may now calculate
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uncertainties �(P r)�(Qr) for any integers r, for example if r is odd we obtain

�(P r)�(Qr) =
√

〈P 2r〉〈Q2r〉 � (2κ)r .

Similarly,

�(P 2n)�(Q2n) = A2n
2n(m) − (

An
n(m)

)2 � (2κ)n[(2κ + n)n − (2κ)n],

for any integer n. For the case n = 2 we have

�(P 4)�(Q4) � 4κ(2κ + 1)(4κ + 3),

with equality for the ground state m = 0, which is the minimum uncertainty involving the
fourth moments. Again, for � = 0 these uncertainties are proportional to the dimension d and
so are arbitrarily small for sufficiently small d.

5.2. Average taken with respect to the coherent state |α〉�
We now investigate the uncertainty relations in which the average is taken with respect to
the states |α〉�, defined in (25) as the eigenstates of the annihilation operator. These states
minimize the uncertainty, i.e. the general inequality shown in (39) holds with equality due to
the relation

(Q̂ + iP̂ )|α〉� = 0,

but we will verify directly that �Q�P = 1
2 |〈−i[Q,P ]〉| = 1

2 〈1 + νR〉 for these coherent
states. Uncertainty relations for paraboson coherent states have been studied earlier [18, 26],
but without a dimensional interpretation.

First, we evaluate the average value 〈R〉 using (26)

〈R〉 = �〈α|R|α〉� = (−1)�
∞∑

m=0

(|bm|2 − |cm|2)

= (−1)�
I2κ−1(|α|2) − I2κ(|α|2)
I2κ−1(|α|2) + I2κ(|α|2) . (43)

From (3) we find

〈[a, a†]〉 = 1 + (−1)�(d − 1 + 2�)〈R〉 (44)

and, since 〈a†a〉 = |α|2, we deduce

〈{a, a†}〉 = 1 + (−1)�(d − 1 + 2�)〈R〉 + 2|α|2. (45)

The uncertainty (�Q)2 = 〈Q2〉 − 〈Q〉2 may be calculated using

〈Q〉 = 1√
2
〈a + a†〉 = 1√

2
(α + α) 〈Q2〉 = 1

2

(
α2 + α2

)
+ 1

2 〈{a, a†}〉,
and hence

(�Q)2 = 1
2 + 1

2 (−1)�(d − 1 + 2�)〈R〉.
We determine �P similarly and find �P = �Q, and so

�Q�P = 1
2 [1 + (−1)�(d − 1 + 2�)〈R〉] = 1

2 |〈−i[Q,P ]〉|,
as expected. Numerical calculations show that squeezing (i.e. �Q�P < 1

2 ) takes place over
a range of values of d and |α| with � = 0, 1. For small |α| and fixed κ we have the expansion

�Q�P = 2κ +

(
1

4κ
− 1

)
|α|2 + O(|α|4),

showing that the uncertainty is 2κ for small |α|, consistent with (39).
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5.3. Average taken with respect to Perelomov and Barut–Girardello states

Since the Perelomov and Barut–Girardello states (32) and (36) have definite parity we have
in each case the average values 〈P 〉 = 0 = 〈Q〉. For the Perelomov states we may calculate
averages directly using the expression (32) to obtain

〈P 2〉P = 1

2
(d + 2�)

(1 − ζ )(1 − ζ )

1 − ζ ζ
, 〈Q2〉P = 1

2
(d + 2�)

(1 + ζ )(1 + ζ )

1 − ζ ζ
,

and so we have the uncertainty

�Q�P = 1

2
(d + 2�)

√
(1 − ζ 2)(1 − ζ 2)

1 − ζ ζ
, (46)

which reduces to (39) for real or pure imaginary values of ζ with |ζ | < 1.
In the case of the Barut–Girardello states (36) we first calculate (following [33]) the

average value 〈K0〉BG, where K0 is the su(1, 1) generator with the matrix elements as shown
in (20). From (35), using orthonormality of the basis {|κ,m〉}, we obtain

〈K0〉BG = BG〈z, κ|K0|z, κ〉BG = |z|2κ−1

I2κ−1(2|z|)
∞∑

m=0

|z|2m(m + κ)

m!�(m + 2κ)

= κ +
|z|I2κ(2|z|)
I2κ−1(2|z|) . (47)

From (41) we have

〈P 2〉BG = 2〈K0〉BG − z − z, 〈Q2〉BG = 2〈K0〉BG + z + z, (48)

from which we calculate the uncertainty �Q�P =
√

〈P 2〉BG〈Q2〉BG with respect to Barut–
Girardello states which, like (46), is evidently a function only of κ = 1

4 (d + 2�) and the
complex parameter, in this case z, z. In contrast to (46), however, the uncertainty does not
reduce to (39) for real or pure imaginary z. For small |z| and fixed κ we have the expansion

�Q�P = 2κ +
|z|2 sin2 θ

κ
+ O(|z|4),

where z = |z| eiθ , showing that the uncertainty is arbitrarily small for small κ and sufficiently
small |z|.

6. Time-dependent harmonic oscillator

We now investigate time-dependent coherent states in any dimension d. First we describe
exact solutions of the time-dependent harmonic oscillator, which in fractional dimensions is
defined by the Hamiltonian

H(t) = 1
2 (P 2 + ω(t)2Q2), (49)

where P,Q satisfy (1) and (2), and where the frequency ω(t) is a given function of time. In
order to solve the time-dependent Schrödinger equation[

i
∂

∂t
− H(t)

]
ψ(x, t) = 0, (50)

we use the method of Lewis and Riesenfeld [20], originally developed in one dimension. We
define a dynamical invariant I (t) which satisfies

dI

dt
= ∂I

∂t
+ i [H, I ] = 0. (51)
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I has eigenvalues which are constant in time and its time-dependent eigenfunctions, multiplied
by a phase factor, solve (50). If H can be expressed as a linear combination of elements of a
Lie algebra, then I may also be constructed as a linear combination of these same elements,
with time-dependent coefficients. In our case, the relevant algebra is su(1, 1) generated by
quadratic combinations of P,Q, as shown in (17).

As described in our previous paper [9], following Lewis and Riesenfeld [20], the invariant
I has the expression

I = 1
2ρ2P 2 + 1

2 (ρ−2 + ρ̇2)Q2 − 1
2ρρ̇(PQ + QP)

= 1
2 (a†a + aa†), (52)

where the time-dependent operators a(t), a†(t) are given by

a† = 1√
2
((ρ−1 + iρ̇)Q − iρP ), a = 1√

2
((ρ−1 − iρ̇)Q + iρP ), (53)

and satisfy the equal time paraboson relations analogous to (3)

[a, a†] = 1 + νR, {a,R} = {a†, R} = 0, [a, I ] = a, [a†, I ] = −a†. (54)

The function ρ(t) is any solution of the Ermakov equation [41]

ρ̈ + ω(t)2ρ = 1

ρ3
, (55)

all solutions of which can be constructed (following [42, 43, 20]) from solutions f (t) of the
linear equation of motion for the classical time-dependent harmonic oscillator:

f̈ + ω(t)2f = 0. (56)

Specifically, the general solution of (55) is given by

ρ2 = f 2
1 + W−2f 2

2 ,

where f1, f2 are linearly independent solutions of (56), and where the Wronskian W =
f1ḟ 2 − ḟ 1f2 is a nonzero constant.

It follows from the form of this general solution that ρ(t)2 is strictly positive for all t (see
appendix 2 in [44] and the discussion in appendix B of [45]), and hence ρ(t) > 0 for all t.
Arbitrary powers of ρ, as appear in the time-dependent wavefunctions (see (62)), are therefore
well defined, as is also the function �(t) defined in (58).

Given any solution f of (56), a second linearly independent solution is f (t)
∫

dt
f (t)2 , which

leads to the following convenient formula for solutions of the Ermakov equation (55):

ρ(t)2 = f (t)2

[
1 +

(∫
dt

f (t)2

)2
]

, (57)

as may be verified directly. The general solution depends on two constants, a multiplicative
constant associated with f and an integration constant.

The eigenvalues of I can be determined exactly as for the case of the time-independent
Hamiltonian because I has the same form as H, as shown in (9). The eigenstates |n, t〉I of I are
given by (10), where the creation operators are now time dependent, and I has eigenvalues as
given by (13). We will construct these eigenstates, however, more directly as wavefunctions
φm,�(x, t) in the Hilbert space H.

In the Heisenberg picture, the time dependence of the operators a†(t), a(t) is given [9] by

a†(t) = ei�(t) a
†
0, a(t) = e−i�(t) a0
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where a0 = a(0), a
†
0 = a†(0) and

�(t) =
∫ t

0

dt ′

ρ(t ′)2 , (58)

taking t = 0 as the initial time. These relations imply that

I (t) = I (0) = 1
2

(
a
†
0a0 + a0a

†
0

)
,

which explicitly demonstrates that I is constant in time.
Also, as in the time-independent case, the operators K0(t),K+(t) and K−(t) generate

su(1, 1), where

K0(t) = 1
4 {a(t), a†(t)} = 1

4

{
a
†
0, a0

} = K0(0),

K+(t) = 1
2a†(t)

2 = 1
2 e2i�(t)

(
a
†
0

)2 = e2i�(t) K+(0)

K−(t) = 1
2a(t)2 = 1

2 e−2i�(t)(a0)
2 = e−2i�(t) K−(0),

and satisfy (19) at any given time. Representations are given by (20) and are labelled by the
index κ as shown in (21) which, in the application to fractional dimensions, takes the value
κ = 1

4 (d + 2�). Evidently I is related to K0 by I (t) = 2K0(t) and has the eigenvalues 2κ + 2m

for m = 0, 1, 2, . . . .

A useful observation by several authors (see for example [46]), which relies on properties
of su(1, 1) and therefore extends to the fractional dimensional case, is that I (t) and the
time-independent Hamiltonian are related by a simple unitary transformation, specifically

T I (t)T † = 1
2 (P 2 + Q2), (59)

where

T = exp

(
i
log ρ

2
(QP + PQ)

)
exp

(
−i

ρ̇

2ρ
Q2

)
. (60)

Hence, the time-dependent eigenstates |n, t〉I of I are given by

|n, t〉I = T †|n〉e,o

where |n〉e,o denotes the even or odd time-independent states as defined in (10). The application
of this construction to quantum mechanics in fractional dimensions is obtained in the coordinate
representation as for the time-independent case, by substituting the explicit representation (5)
for P,Q,R. This leads to the construction of the explicit wavefunctions φm,�(x, t), as given
in [9] and as shown in (64).

The time-dependent Schrödinger equation reads

Hψ(x, t) = 1
2 [−�radial + ω(t)2x2]ψ(x, t) = i

∂

∂t
ψ(x, t), (61)

where �radial is defined by (6). The solutions ψm,�(x, t) are obtained (following [20, 9]) by
multiplying the corresponding eigenfunctions φm,�(x, t) of I by a phase factor eiαm(t) where

αm(t) = −
(

2m + � +
d

2

)
�(t),

where �(t) is defined by (58). The normalized solutions ψm,�(x, t) of (61) are then given by

ψm,�(x, t) =
√

m!
�(m+�+ d

2 )
(−1)mL

(�−1+ d
2 )

m

(
x2

ρ2

)
x�ρ− 1

2 (d+2�)

× exp

[
− x2

2ρ
(ρ−1 − iρ̇)

]
exp

[
−i

(
2m + � +

d

2

)
�

]
. (62)
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These wavefunctions, which are well defined for any d > 0 and any � = 0, 1, 2, . . . , are
orthonormal for fixed �, at any time t, with respect to the inner product (4):

(ψm,�, ψm′,�) = δm,m′ ,

and are also orthogonal for wavefunctions of opposite parity.
For constant ρ2 = ω−1 these wavefunctions are separable as functions of x and t, and

reduce to those for the time-independent case shown in (14), multiplied by a phase factor that
determines their time evolution. Even for constant ω, however, solutions with nontrivial time
dependence can be obtained by choosing nontrivial solutions of the Ermakov equation (55).
For example, a family of solutions, depending on a parameter λ, is

ρ(t)2 = cos2 ωt + λ4 sin2 ωt

ωλ2
, (63)

corresponding to the choice

f (t) = 1

λ
√

ω
cos ωt

in (56) and (57). In this case �(t) = arctan
(
λ2 tan ωt

)
and the wavefunctions ψm,�(x, t)

have a nontrivial time dependence for any λ �= 1. The wavefunction evolves from an initial
configuration which is a rescaled pure state and so develops a nontrivial time dependence. Such
solutions lead to time-dependent coherent states, even for constant ω, as we now investigate.

6.1. Time-dependent coherent states

We first construct time-dependent coherent states |α, t〉� as eigenfunctions of the time-
dependent annihilation operator a(t),

a(t)|α, t〉� = α|α, t〉�,
following the calculation in section 4.1. We therefore expand 〈x|α, t〉� in terms of
eigenfunctions of I which, instead of the wavefunctions ψm,�(x, t) shown in (62), we take
to be the following orthonormal wavefunctions φm,�(x, t), omitting for convenience the phase
factor eiαm(t):

φm,�(x, t) =
√

m!

�(m + 2κ)
(−1)mL(2κ−1)

m

(
x2

ρ2

)
x�ρ−2κ exp

[
− x2

2ρ
(ρ−1 − iρ̇)

]
, (64)

where 2κ = � + d
2 . We have

〈x|α, t〉� =
∞∑

m=0

bmφm,�(x, t) + cmφm,�+1(x, t), (65)

and using

aφm,� =
√

2mφm−1,�+1 aφm,�+1 =
√

2m + 4κφm,�

we obtain the same coefficients bm, cm as shown in (27), together with the normalization as
shown in (29).

We may sum the series (65) as before to obtain

〈x|α, t〉� = ρ−1x1− d
2

(
α

|α|
)−2κ+1

e− α2

2 exp

[
− x2

2ρ
(ρ−1 − iρ̇)

]
F2κ

(√
2xα
ρ

)√
F2κ(|α|2)

, (66)



Coherent states and their time dependence in fractional dimensions 10931

where F is defined in (28). As an example, for the special case of the simple harmonic
oscillator

(
d = 1, κ = 1

4

)
we obtain

〈x|α, t〉�=0 = 1√
π

1
2 ρ

e− 1
2 (α2+|α|2) e

√
2xα
ρ exp

[
− x2

2ρ
(ρ−1 − iρ̇)

]
.

The construction of coherent states using analytic representations of su(1, 1) proceeds as
for the time-independent case, due to the fact that the matrix elements of the generators of
su(1, 1) remain time independent, as shown in (20). We derive the time-dependent Perelomov
coherent states 〈x|ζ, t, κ〉P from the expression (31) by replacing the eigenstates |κ,m〉 by the
associated wavefunctions φm,�(x, t) given in (64). After using the same generating function
for generalized Laguerre polynomials as before we obtain

〈x|ζ, t, κ〉P = x�(1 − |ζ |2)κ
ρ2κ

√
�(2κ)(1 + ζ )2κ

exp

(
i
ρ̇x2

2ρ

)
exp

[
x2(ζ − 1)

2ρ2(ζ + 1)

]
. (67)

The overlap of two time-dependent Perelomov coherent states is time independent and has
the same expression as before, see (33). This is due to the fact that the time dependence
of the coherent states (67) appears only through a rescaling of the x-variable by the function
ρ, together with a phase factor and a multiplicative factor which cancel in the integration.

As in the case of Perelomov states, we can explicitly evaluate the Barut–Girardello states
|z, t, κ〉BG in the coordinate representation by substituting κ = 1

4 (d + 2�) and replacing the
eigenstates |κ,m〉 by the normalized wavefunctions φm,�(x) given in (64). As before, the sum
over m can be performed explicitly with the help of the generating function for generalized
Laguerre polynomials to obtain

〈x|z, t, κ〉BG = ρ−1x1− d
2 e−z exp

[
− x2

2ρ
(ρ−1 − iρ̇)

]
I2κ−1

( 2x
√

z

ρ

)
√

I2κ−1(2|z|) . (68)

The overlap of these states is also time independent, in the same manner as occurs for the
Perelomov states, and similarly for the overlap between Barut–Girardello states and Perelomov
states as shown in (37).

6.2. Uncertainty relations with respect to time-dependent coherent states

Next, we investigate the uncertainty relations associated with the time-dependent oscillator
with respect to various states. By taking the average with respect to the normalized states
defined in (62) or (64) we obtain 〈P 〉 = 0 = 〈Q〉, and also the time-dependent values

〈P 2〉 = 1
2 (4m + d + 2�)(ρ−2 + ρ̇2) 〈Q2〉 = 1

2 (4m + d + 2�)ρ2.

Therefore,

�Q�P =
√

〈P 2〉〈Q2〉 = 1
2 (4m + d + 2�)

√
1 + ρ2ρ̇2, (69)

and so the uncertainty always increases with respect to these time-dependent states.
It is also of interest to evaluate the expectation value of the Hamiltonian H with respect

to these same wavefunctions; we find

〈H 〉 = 1
4 (4m + d + 2�)(ρ−2 + ρ̇2 + ω2ρ2), (70)
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where the right-hand side is time independent if and only if ω is time independent. For the
specific solutions ρ given by (63), corresponding to constant ω, we find

〈H 〉 = 1
4 (4m + d + 2�)(λ−2 + λ2)ω

which, as expected, takes its minimum value at λ = 1. The expression (70) shows that the
energy levels of H remain equally spaced as time varies, as observed also by Lewis [20] for
d = 1.

Next, we evaluate the uncertainty with respect to the time-dependent coherent states |α, t〉�
derived in (66), which are eigenfunctions of the annihilation operator. 〈R〉 is time independent
and so is given by (43), and similarly for the average values 〈[a, a†]〉 and 〈{a, a†}〉, which are
given by (44) and (45), respectively. (�Q)2 and (�P )2 may be calculated using

Q = 1√
2
ρ(a + a†), P = 1√

2
(−iρ−1 + ρ̇)a + 1√

2
(iρ−1 + ρ̇)a†,

leading to

(�Q)2 = 1
2ρ2 (1 + ν〈R〉) (�P )2 = 1

2 (ρ−2 + ρ̇2)(1 + ν〈R〉),
where ν = (−1)�(d − 1 + 2�). Hence,

�Q�P = 1
2

√
1 + ρ2ρ̇2(1 + ν〈R〉)

where 〈R〉 is given by (43).
The uncertainty with respect to the Perelomov and Barut–Girardello states (67) and (68)

may be calculated as before. We have the average values 〈P 〉 = 0 = 〈Q〉, and for the
Perelomov states we find

〈P 2〉P = 1

2
(d + 2�)

[(1 − ζ )ρ−1 − i(1 + ζ )ρ̇][(1 − ζ )ρ−1 + i(1 + ζ )ρ̇]

1 − ζ ζ

〈Q2〉P = 1

2
(d + 2�)ρ2 (1 + ζ )(1 + ζ )

1 − ζ ζ
,

and so we obtain

�Q�P = 1

2
(d + 2�)

√
[(1 − ζ 2) − i(1 + ζ )2ρρ̇][(1 − ζ 2) + i(1 + ζ )2ρρ̇]

1 − ζ ζ
.

For ζ = 0 this reduces to the previous uncertainty (69) at m = 0, corresponding to the fact
that in this case the Perelomov states (67) necessarily reduce to the wavefunctions φm,�(x, t)

given in (64). The uncertainty for the Barut–Girardello states (68) is time independent and
therefore has the same value as derived from (47) and (48). This occurs because the matrix
elements of the su(1, 1) generators are time independent and hence, according to (41), so also
are the expectation values of P 2 and Q2.

7. Conclusion

We have extended analytic representations of coherent states for su(1, 1), the Perelomov
and Barut–Girardello states, from one dimension to any fractional dimension d. We have
obtained closed form expressions for these coherent states which has enabled us to investigate
their properties as functions of d. By means of dynamical invariants we have constructed
time-varying harmonic oscillator wavefunctions and corresponding time-dependent coherent
states in fractional dimensions, again in closed form, including coherent states associated
with analytic representations of su(1, 1), and investigated their properties as functions of
time and dimension. Finally, we have examined uncertainty relations and the specific role of
dimensionality with regard to squeezing properties of coherent states.
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